
Chemical Engineering Journal 101 (2004) 391–396

A model for predicting axial mixing during gas–liquid Taylor
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Abstract

A numerical model has been developed for the study of axial mass transfer in gas–liquid Taylor flow at low Bodenstein numbers. The
model assumes well mixed liquid slugs of uniform concentration and liquid films around the bubbles that can be adequately described by
a one-dimensional convection-diffusion equation. A finite volume method was used for its solution. It was found that the model is suitable
for Ca < 10−3, Bo < 500 andLs < 16. In addition forBo > 10 it could be approximated by a simple analytical expression.

The results showed that axial mixing is low and increases with increasing film thickness as well as increasing bubble and slug lengths.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Taylor flow is one of the dominant two phase flow pat-
terns in microscale diameter channels. It consists of elon-
gated bubbles of equivalent diameter larger than the tube
diameter separated by liquid slugs. The bubbles adopt a
characteristic capsular shape. They completely fill the chan-
nel cross section and are only separated from the wall by
a thin film of liquid. Because of the presence of bubbles in
front and at the back of the slugs, the flow field in the liq-
uid is modified compared to single phase flow, and toroidal
vortices are formed[1].

Compared to single-phase laminar flow, Taylor flow offers
many advantages[2]. These can be summed up as follows:

(1) The recirculation within the liquid slugs improves ra-
dial mass transfer, i.e. from liquid to wall and from gas
to liquid [3–5].

(2) The separation of the bulk liquid with the bubbles sig-
nificantly reduces axial mixing between liquid slugs.
The film surrounding the bubbles is the only means of
communication between two successive slugs and in
the majority of cases its thickness is only a fraction of
a percentage of the tube diameter.
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The combination of good radial mass transfer and low
axial mass transfer in the liquid makes Taylor flow suit-
able for two-phase applications that involve mass transfer
(fluid–fluid or wall-fluid) or single phase liquid applications
which suffer from large backmixing. The latter can be signif-
icant in microscale systems where low sample volumes are
involved. Taylor flow has also been suggested as a means of
introducing sequentially different reactants/samples within
a microchannel reactor/analyser to avoid their mixing[6].
Although Taylor flow significantly reduces axial mixing, it
does not eliminate it, because of the liquid film around the
bubbles that connects the slugs. In high throughput experi-
mentation systems it becomes important to be able to quan-
tify axial mixing so that sufficient time/separation between
the injected samples is introduced.

Existing axial mixing studies during Taylor flow in
microchannels originate mainly from two-phase catalytic
monolith applications[2,7,8]. Pedersen and Hovarth[9]
proposed a model for axial mass transfer in capillaries with
Taylor flow where the liquid slug was divided into two
separate regions, the first containing the recirculating liquid
and the second consisting of the liquid film flowing between
the slugs. Perfect mixing was assumed in the two regions
and the mass transfer between them was controlled by an
adjustable parameter. Thulasidas et al.[8] also divided the
liquid slug into two separate well mixed regions, namely,
a recirculating slug and a film, that exchange mass by dif-
fusion only. Their model had no adjustable parameters and
reasonably matched experimental results on residence time
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Nomenclature

A cross sectional area of film (m2)
Bo Bodenstein number (Ubd/D)
Ca capillary number (µUb/γ)
d microchannel diameter (m)
D diffusivity of tracer species (m2/s)
De dispersion coefficient (m2/s)
E(t) residence time distribution curve
Fr Froude number (U2

b/gd))
g acceleration due to gravity (m/s2)
k tracer cell number
Ls slug length (m)
Lb bubble length (m)
Lcell cell length (m)
Lreactor reactor length (m)
N total number of cells in model
NA number of cells ahead of tracer cell
Ni flux (kg/m2 s)
Re Reynolds number (ρUbd/µ)
t time (s)
tm mean of RTD (s)
uuu velocity field in liquid slug (m/s)
u one dimensional liquid velocity (m/s)
Ub bubble velocity (m/s)
V volume of a liquid slug (m3)
VDN vessel dispersion number (De/UbLreactor)
x axial coordinate (m)

Greek symbols
γ interfacial tension (N/m)
δ thickness of film surrounding bubble (m)
µ liquid viscosity (Ns/m2)
ρ density (kg/m3)
σ standard deviation of RTD (s)
τp residence time for PFR (s)
τs residence time for CSTR (s)

Superscripts
i species number
+ left end of the liquid slug
− right end of the liquid slug
x̄ barred symbols are non-dimensionalised

Subscripts
0 initial value att = 0

distribution in single channels obtained by the authors. The
regions close to the bubbles and the convection-diffusion
taking place in them were however neglected because of the
long slugs assumed. For short slugs, of the order of a few
channel diameters, these regions have considerable effect
on the overall mass transfer. In addition, for low Boden-
stein number (Bo) values the diffusing species is stripped
from the thin film at the leading end of the liquid slug,

and the assumption of two separate well mixed regions
fails.

The present work is aimed at the study of axial mixing
at low Bodenstein numbers where slugs are assumed well
mixed and a unidirectional convection-diffusion equation
can describe mass transfer in the liquid film surrounding the
bubbles. The applicability of the model is also assessed for
a range of system parameters.

2. Model development

The parameters that are expected to affect axial mixing in
Taylor flow are the thickness of the liquid films that surround
gas bubbles, the length of the bubbles, which determines the
length of the liquid films, and the length of the liquid slugs
which affects recirculation and mass transfer within these
slugs. The film thickness depends on the balance of inertial,
viscous and gravitational forces in the liquid and the surface
tension force along the interface, or on the following di-
mensionless numbers[10]: capillary number (Ca), Reynolds
number (Re) and Froude number (Fr). The influence of the
two numbersRe andFr decreases with decreasingCa val-
ues and forCa < 10−3 the film thickness can be correlated
only to Ca. Different correlations (summarised by Edvins-
son and Irandoust[10]) derived from experimental studies
relate film thickness toCa.

For given gas and liquid flow rates, different combina-
tions of bubble and slug lengths can satisfy the overall mass
balance[11]. In capillaries where surface tension domi-
nates, bubble breakup and coalescence within the channel
are absent, and bubble and slug sizes will be determined by
the conditions at the channel inlet, where the two phases
meet. Different geometries and flowrates will affect both
lengths. It is possible, therefore to produce the required bub-
ble and slug lengths by varying the inlet channel geometry.
Based on this, the current study is not concerned with bub-
ble formation at the channel inlet but assumes that certain
repeating (constant) bubble and slug lengths exist within
the microchannel. In the analysis below a single unit of the
repeating pattern comprising a single bubble and a single
slug, or a slug and two half bubbles is called a “unit cell”,
(seeFig. 1).

Inlet Outlet 

OutletInlet 

Direction of cell movement

Ls 0.5 Lb0.5 Lb

Fig. 1. Schematic of a unit cell with two half bubbles and one liquid
slug. The length of the bubble isLb. The length of the slug isLs.
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Fig. 2. Tracer concentration in a liquid slug with initial unit concentration
after it passed through a reactor (L̄reactor = 333)filled with tracer free
liquid. Top: Bo = 990, Bottom:Bo = 64,800.

To study axial mixing a pulse of tracer is added as a unit
cell of concentrationρ0 in the microchannel at timet = 0.
The concentrations in the slugs exiting the reactor give the
residence time distribution curve. All other unit cells ahead
and behind the tracer cell have initially 0 concentration.
As the tracer unit cell moves in the reactor some tracer is
transferred from it to the neighbouring cells through the
liquid film. In a moving frame of reference with the same
velocity as the initial tracer cell, each unit cell resembles a
vessel with an inlet and an outlet (seeFig. 1).

The convection-diffusion equation can be written in di-
mensionless form for a unit cell as follows:

∂ρ̄i

∂t̄
+ ū̄ūu ∇̄ρ̄i −

(
1

Bo

)
∇̄2ρ̄i = 0 (1)

where all terms have been appropriately non-dimensiona-
lised.

To solveEq. (1) the flow field ū̄ūu in the convection term
needs to be known. With decreasing Bodenstein number, the
diffusion term in the equation starts to gain importance. The
increased importance of diffusion coupled with recirculation
means that concentration within the slugs becomes uniform
very quickly[12], (seeFig. 2). The increased importance of
diffusion however, can also result in a flux of the tracer from
both ends of the unit cell. To account for this, the cells both
in front and at the back of the tracer injection cell need to be
taken into account. Each of the surrounding cells will also
have a tracer concentration that will be linked via the film to
the cells surrounding it and so on. It is therefore important
to include in the modeling a sufficient number of cells on

Fig. 3. Schematic diagram of the elements of the model. The tracer is initially introduced in a single unit cell at positionk with N − k + 1 cells behind
and k − 1 cells in front.

both sides of the initial tracer cell so that the end cells on
either side have negligible tracer concentrations and there
is no mass transfer between them and their neighbours. At
the boundaries of the first and last cells, tracer flux can then
be neglected. It is also assumed that the film surrounding
the bubbles has uniform velocity and is well mixed radially.
As a result the film can be adequately modelled using a
unidirectional convection-diffussion equation. A schematic
diagram of the elements used in the model is shown inFig. 3.

The following characteristic parameters are used to
non-dimensionaliseEq. (1).

Characteristic time
d

Ub
Characteristic length d

Characteristic velocity Ub

The characteristic time is related to convection which will
still dominate even at increased diffusion contribution.

For the analysis of axial mixing with a step or pulse
change, the following transform is applied

ρ−i = ρi

ρi
0

whereρi
0 is the tracer concentration in the tracer unit cell at

time t0 andi refers to the tracer species.
For any filmk the resulting equation can be stated as:{
∂ρ̄i

∂t̄
+

(
∂ρ̄i

∂x̄

)
− 1

Bo

∂2ρ̄i

∂x̄2

}
k

= 0 (2)

For a mixed slug regionk of volumeV and a film having
a cross-sectional areaA (seeFig. 4), a mass balance yields:{
V

∂ρi

∂t
+ A(Ni− − Ni+)

}
k

= 0 (3)

whereNi− andNi+ refer to the fluxes downstream and up-
stream of the slug, respectively, that can be found from

Ni− =
{
(uρi) − Di ∂ρ

i

∂x

}
x−

(4)

Ni+ =
{
(uρi) − Di ∂ρ

i

∂x

}
x+

(5)

Pointsx− andx+ refer to the positions at the left and right
ends of the liquid slug.
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Fig. 4. Diagram depicting the mass balance on a single slug. The volume
of the liquid slug isV and the tracer flux into the volume is through a
film of cross sectional areaA.

Eqs. (3)–(5)can be non-dimensionalised to give
{

V̄

Ā

∂ρ̄i

∂t̄
+ (N̄i− − N̄i+)

}
k

= 0 (6)

N̄i− =
{
(ρ̄i) − 1

Bo

∂ρ̄i

∂x̄

}
x̄−

(7)

N̄i+ =
{
(ρ̄i) − 1

Bo

∂ρ̄i

∂x̄

}
x̄+

(8)

A set of N equations of the form ofEq. (2) and (N − 1)
equations of the form ofEq. (6)connecting them is obtained.
If the number of cells ahead and behind the tracer cell is
large, then the concentrations at the end cells should be
low, such that the boundaries imposed would be either the
Neumann boundary conditions

{N̄i−}k=0 =
{
(ρ̄i) − 1

Bo

∂ρ̄i

∂x̄

}
x̄−

= 0 (9)

{N̄i+}k=N−1 =
{
(ρ̄i) − 1

Bo

∂ρ̄i

∂x̄

}
x̄+

= 0 (10)

or the Dirichlet boundary conditions

(ρ̄i)k=0,x̄− = 0 (11)

(ρ̄i)k=N−1,x̄+ = 0 (12)

The model given byEqs. (2), (6)-(8), (11) and (12)can only
be solved numerically. However, for largeBo an analytical
expression can be obtained. The asymptotic limit of expres-
sion (2) as the Bodenstein number value becomes large is
given byEq. (13). This is the governing equation of a plug
flow reactor (PFR). Furthermore, each slug can be consid-
ered as a continuous stirred tank reactor (CSTR). Each unit
cell appears then as a combination of PFR–CSTR in series.
The tracer flux is governed purely by convection in the film
and only cells downstream of the initial tracer cell will be
affected.

∂ρ̄i

∂t̄
+

(
∂ρ̄i

∂x̄

)
= 0 (13)

The residence time distribution of a PFR–CSTR series is
given by[13].

E(t) = 0 (t < τp) (14)

E(t) = e−(t−τp)/τs

τs
(t ≥ τp) (15)

For a cell at the inlet of the reactor with unit concentra-
tion that encounters clear liquid at its inlet as it moves, the
concentration in the slug is given byEq. (16)

ρ̄(t) = 1 + (e−(t−τp)/τs − 1) h(t) (16)

whereh(t) is the Heaviside unit step function.
Subsequent celln can be shown to have a slug concentra-

tion given byEq. (17)

ρ̄n(t) = e(t−(n+1)τp)/τsh(t − (n + 1)τp)((t − (n + 1)τp)/τs)
n

Γ(n + 1)

− [Γ(n) − Γ(n, (t−(n + 1)τp)/τs)]h(t−(n+1)τp)

Γ(n)

+ [Γ(n)−Γ(n, (t−nτp)/τs)]h(t−nτp)

Γ(n)
(17)

whereΓ is the Gamma function.
From the unit cell velocity and geometry, the two param-

etersτp andτs can be calculated

τp = Lb

Ub
(18)

τs = V̄ /Ā

Ub
(19)

2.1. Numerical solution of the low Bodenstein number
model

A finite volume method is used to discretise the set of
Eqs. (2) and (6)and the Dirichlet boundary conditions (11)
and (12). The solution algorithm uses the exponential spa-
tial discretisation scheme and an implicit time discretisa-
tion method. Details of the solution method can be found
in Patankar[14]. The liquid slug appears as a finite volume
cell of volume equivalent to the liquid slug volume. For the
first and last films in the series of cells, the left and right
hand boundary conditions can be either a zero flux Neumann
or a zero concentration Dirichlet boundary conditions. The
solution of the system is independent of which is used pro-
vided enough cells on both sides of the tracer cell have been
specified. The Dirichlet boundary condition was chosen be-
cause it is not conservative, i.e. there will appear a loss of
tracer mass from the system if the number of cells ahead or
after the tracer cells are insufficient. A mass balance at the
end of the simulation serves as a check for the number of
cells chosen. The tridiagonal system of algebraic equations
is solved at each time step to obtain concentration profiles
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in the films and slugs. The simulations start with the tracer
cell just inside the reactor.

The concentration of the tracer at the channel outlet deter-
mines the simulation time. The dimensionless time at which
the first unit cell exits isL̄reactor− (NA)L̄cell. At each time
step, the unit cell exiting and its concentration at the reactor
outlet are recorded. The simulations stop when a cell with
concentration smaller than a tolerance concentration (ρi <

10−6) leaves the reactor.
A Matlab® code was written implementing the method

outlined above. The correct implementation of the numerical
method was verified in a number of ways. The solution of
the convection-diffusionEq. (2) for a single film using this
method compared well with an analytical solution[15] for
the specific initial and boundary conditions used. In addition,
the numerical prediction of the model when the value of the
Bodenstein number was set to an arbitrary large value agreed
well with the prediction of the analytical solution given by
expression (17). The CPU time never exceeded one hour
for the largest system when executed on an AMD AthlonTM

1.6 GHz processor.

3. Results

The model is applied to a circular channel reactor with
1 m length and 300�m diameter, which corresponds to
L̄reactor = 3333. An example is given below for a tracer
diffusivity typical of a liquid–liquid system, ethanol and air
physical properties, combination of bubble and liquid slug
lengths and a residence time in reactor (∼7.8 min) such that
Bo = 500,Ca = 1× 10−4, L̄b = 1.10, L̄s = 1. For thisCa
the film thickness is equal tōδ = 0.00249[16]. Assuming
the geometry of a bubble corresponds to a cylinder with
spherical caps, the ratiōV/Ā is calculated to be 122.6. For
the simulation the initial tracer cell is placed with 5 cells
ahead and 50 cells behind.

The system is solved and the outlet concentrations are
given in Fig. 5. The residence time distribution curve is
obtained by normalising the concentration-time graph. The
mean and standard deviation of the distribution can be
used to calculate the vessel dispersion number (VDN) using
Eq. (20), [13].

σ2

t2m
= 2(VDN) + 8(VDN)2 (20)

wheretm andσ are the mean and standard deviation of the
distribution given inFig. 5. The vessel dispersion number is
the non-dimensionalised dispersion coefficient in the disper-
sion model[13]. In the above exampleVDN = 4.92×10−6.

The effect on the vessel dispersion number of the three
non-dimensional numbers,Ca, L̄s and L̄b that define the
geometric characteristics in a Taylor flow system can be
seen inFigs. 6 and 7. Both figures show very lowVDN
values, confirming that axial mass transfer in a liquid is
significantly reduced with Taylor flow to near PFR level.
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Fig. 5. Concentration of tracer in the liquid slugs exiting the reactor
channel. Each peak corresponds to the concentration in an exiting slug.
The spacing between the peaks is determined by the length of the liquid
film surrounding the bubbles.

For comparison, the vessel dispersion number for laminar
flow of liquids in tubes is at least three orders of magnitude
larger [13]. An increase inVDN, and hence axial mixing,
with increasingCa can also be seen. This is to be expected as
increasedCa results in thicker liquid films that would favour
communication between slugs. It can also be seen thatVDN
increases with̄Ls andL̄b. It should be noted that a change in
L̄b does not affect the concentration of the exiting slugs. The
increase in the spacing between the different slugs caused
by the increased bubble length affects the mean and standard
deviation of the residence time distribution as predicted by
Eq. (20)and henceVDN. For reducedVDN in a Taylor flow
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Fig. 6. Variation of the vessel disperion number withL̄s and Ca for a
bubble length ofL̄b = 1.1.



396 W. Salman et al. / Chemical Engineering Journal 101 (2004) 391–396

10-7

10-6

10-5

10-4

10-3

10-2

0 5 10 15 20 25 30 35

V
D

N
 

Ca=5x10-6 Ca=1x10-3

Lb

Fig. 7. Variation of the vessel disperion number with bubble lengthL̄b

and Ca for slug length ofL̄s = 1.0.

system with mass transfer, short bubble and slug lengths
should be formed at the inlet.

Comparison of the results from the numerical technique
to the analytical solution given byEq. (17)showed about 2%
difference in predictions for the lowest Bodenstein numbers.
Decreasing the Bodenstein number below 10 to a value of 2
showed a much more significant difference in the predictions
of the two models. The analytical solution (Eq. (17)) can
therefore be used forBo larger than 10.

The simple numerical model described above is suitable
for low Bodenstein numbers where diffusion is sufficiently
large for mixing to ensure uniform concentration in the slug.
To find the upper limit of the Bodenstein number up to which
this simple model can be used, results were compared with
detailed numerical simulations[12] which incorporate the
flow field inside each unit cell. These showed that the present
model may be used forBo up to 500, above which the model
starts to underpredict the vessel dispersion number.

It is worth noting that the cuves inFigs. 6 and 7are
independent of the Bodenstein number for 10< Bo < 500.

Finally, with increasing slug length, the behaviour of the
unit slug deviates more and more from being a well mixed
region and the time needed for the material to convect and
diffuse from one end of the slug to the other would become
significant.L̄s = 16 was found to be an upper limit for the
above model.

4. Conclusions

A numerical model has been developed for axial mixing
in microchannel Taylor flow. The model assumes uniform
concentration in the liquid slugs and uses a uniform velocity
and concentration in the film surrounding the bubbles. The

model can either be solved numerically, or for large Boden-
stein numbers, simplified to yield an analytical solution.

The model was found to be suitable for rangesCa <

10−3, Bo < 500 andL̄s < 16. Axial mixing was in general
very low. Trends show increasing vessel dispersion number
(increasing axial mixing) with increasing capillary number
and slug and bubble lengths. In addition, forBo > 10, the
simple analytical expression was also able to predict axial
mixing with small deviations from the numerical model.
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